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STEADY-STATE RESPONSE OF THE FLEXIBLE
CONNECTING ROD OF A SLIDER-CRANK

MECHANISM WITH TIME-DEPENDENT
BOUNDARY CONDITION
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(Received 29 May 1995, and in final form 15 April 1996)

This paper presents a finite element method for the dynamic analysis of a flexible
connecting rod in a slider-crank mechanism with time-dependent boundary conditions.
Kinetic and strain energies of the flexible link are formulated and used with Hamilton’s
principle to develop the governing equations. Time-dependent boundary conditions instead
of simply-supported end conditions are used to define the displacement field of the
connecting rod. A special finite element method is developed for such a time-dependent
boundary condition. The equations of motion are transformed into a set of ordinary
differential equations and the harmonic balance method is used to obtain the steady-state
amplitudes and rotary angles. The results are compared for the time-dependent and
simply-supported end conditions.
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1. INTRODUCTION

Dynamic analysis of a flexible connecting rod of a slider-crank mechanism has become the
subject of many investigations, which include transient, steady-state and dynamic stability
analyses. The steady-state solutions and the elastic stability for both the transverse and
longitudinal vibrations of the elastic connecting rod in a high-speed slider-crank
mechanism were obtained by Jasinski et al. [1]. The response of the system was found by
Viscomi and Ayre [2] to be dependent upon five parameters; length, mass, damping, link
frequency and external piston force. Sadler and Sandor [3] developed a method of
kinetoelastodynamic analysis. They employed lumped parameter models to simulate the
moving mechanism components. The transient responses in both transverse and
longitudinal directions were investigated by Chu and Pan [4] on the basis of the ratios
between the length of the crank and the length of the connecting rod, rotating speeds of
the crank, viscous damping, and the natural frequencies.

Badlni and Midha [5] investigated dynamic stability by using Euler-Bernoulli and
Timoshenko beam theories. Badlni and Midha [6] investigated the dynamic behavior of
an initially curved connecting rod. Zue and Chen [7] studied the dynamic stability of a
connecting rod based on a perturbation technique, in which the ratio between crank radius
and rod length was assumed to be small. Tadjbakhsh [8] studied the stability of the
slider-crank mechanism with no restriction on the nature of the response and without
simplifying geometric assumptions. Hsieh and Shaw [9] investigated the dynamic behavior
and determined the manner in which this response depended on the system parameters with
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particular emphasis on non-linear analyses of the dynamic response near resonance
conditions.

The above references assume simply-supported boundary conditions at both ends of the
connecting rod, i.e., the moment and displacement vanish at both ends. Agrawal and
Shabana [10] presented the comparisons between the results obtained using different sets
of boundary conditions, and discussed the relationship between the boundary conditions
and the co-ordinate system of the flexible links. In this paper, Hamilton’s principle and
the finite element method are applied to formulate the governing equation of a flexible rod.
The effect of time-dependent boundary condition on the steady-state response is the main
subject in this paper. The harmonic balance method is applied to obtain the steady-state
amplitudes and rotary angles. These results are compared with those obtained by assuming
the simply-supported boundary conditions for the connecting rod. It is found that the
steady-state transverse responses of the present work are near those of the simple support,
but the responses in the axial direction are considerably different and the natural frequency
decreases.

2. FORMULATION OF GOVERNING EQUATION

The slider-crank mechanism shown in Figure 1a consists of the crank OA with length
r, the flexible prismatic rod AB with length L, and the slider B of mass M4. Other symbols
in this figure are as follows: N and F are the normal and the tangential forces acting on
the piston, u is the crank angle, and f is the angle between the X-axis and the undeformed
axis of the connecting rod. Observe that f is defined positive clockwise and is measured

Figure 1. Slider-crank mechanism with a flexible connecting rod. (a) Undeformed configuration. (b) Deformed
configuration.
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Figure 2. A beam element undergoing gross motion and elastic deformation.

from the negative X-axis. Figure 1b shows the deformed slider-crank mechanism. Since
the slider moves along the X-axis, point B, connecting the connecting rod and the slider,
also moves along the X-axis.

The flexible connecting rod is modeled as a Timoshenko beam and Hamilton’s principle
is used to derive the equation of motion of the rod. The following assumptions are made
in the derivation of the equation of motion: (a) The crank is rigid, (b) the cross-sectional
area A, the modulus of elasticity E, the second moment of area I, and the mass density
r of the connecting rod are constant, and (c) the applied force and the friction force acting
on the slider are negligible.

2.1.   

The deformed slider-crank mechanism is shown in Figure 1(b). (i, j) are unit vectors of
the fixed co-ordinate system (OXY), (er , eu) and (ei, ej) are unit vectors of the moving
co-ordinates originating at O and A respectively. The displacement field is

u1(x, y, t)= u(x, t)− yc(x, t), u2(x, y, t)= v(x, t), (1a, b)

where u and v represent the axial and transverse displacements of the connecting rod
respectively, and c is the slope of the deflection curve due to bending deformation only.
The beam element undergoes gross motion and elastic deformation (Figure 2). The
position vector of arbitrary point P of the connecting rod with respect to the fixed frame
is

RP = rer + xoei + (x+ u1)ei +(y+ u2)ej = rer +(xo + x+ u− yc)ei +(y+ v)ej,
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where xo is the distance measured from point A to the original point o of the local
co-ordinate, (x, y) is the position of point P measured from the local original point o of
the particular element concerned.

When the slider moves along the X-axis, the pin joint B, connecting the connecting rod
and the slider, also moves along X-axis. Thus, the condition of point B denotes that the
displacement in the Y-direction is zero, so that

0=RB · j= r sin u−[L+ un+1] sin f+ vn+1 cos f,

where n is the element number of the connecting rod, and un+1 and vv+1 are the axial and
transverse displacements at point B respectively. Substituting the geometric relation of a
rigid body

r sin u=L sin f (2)

into the above equation, one obtains

vn+1 = un+1 tan f, (3)

which is the flexible deformation constraint of the last node of the connecting rod at point
B. Equation (3) was also obtained by Hsieh and Shaw [9]; however, they approximated
vn+1 =0 in the non-linear analysis. Equation (3) is the time-dependent boundary condition
and it is the same as Fahrang and Midha [11].

It is seen that un+1 = vn+1 =0 for the assumption of a simply-supported end is also
included in equation (3). The investigators [7, 8] assumed that the right end of the
connecting rod was simply supported and obtained zero transverse displacement at point
B. In the present work, un+1 and vn+1 might not be zeros at point B. In case of the
assumption of zero transverse displacement at end point B, vn+1 =0, one then has un+1 =0
from (3). It should be noted that the case with un+1 = vn+1 =0, where there is no
deformation at end point B, the end position of elastic assumption of the connecting rod
will be the same as that of rigid body assumption.

However, in the present work the end point B of the connecting rod moves along the
X-axis, both un+1 and vn+1 are not independent, and are related by (3). Therefore, the
piston position could be predicted due to the elastic deformation. With the help of Figure
3, it is convenient to define the horizontal displacement at point B as

DB = un+1/cos f. (4)

Figure 3. At end point B, the displacement relationship between DB , un+1 and vn+1.
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2.2.    

Differentiating equation (2) with respect to time, the absolute velocity of arbitrary point
P on an element of the connecting rod can be written as

R� P = ru� eu +(ut − yct)ei + vtej −f� ek ×[(xo + x+ u− yc)ei +(y+ v)ej

=[−ru� sin (u+f)+ ut − yct +f� (y+ v)]ei +[ru� cos (u+f)+ vt

−f� (xo + x+ u− yc)]ej.

In this paper, the connecting rod is discretized into n elements of equal length l. The
kinetic energy of the connecting rod can be expressed as

T3 = 1
2 gV

rR� P(x, y, t) · R� P(x, y, t) dV= s
n

e=1

Te , (5)

where

Te = 1
2g

l

0

(rA{[−ru� sin(u+f)ut + vf� ]2

+[ru� cos (u+f)+ vt −f� (xo + x+ u)]2}+ rI/2[(f� −ct)2 +f� 2c2]) dx, (6)

is the kinetic energy of an element.
The linear Lagrangian strains are

exx = ux − ycx , eyy =0, exy = 1
2(vx −c), (7)

where the higher order terms 1
2v

2
x , uxc, yccx are neglected in exx and exy . The strain energy

of the connecting rod can be expressed as

U3 = 1
2 gV

sijeij dV= s
n

e=1

Ue , (8)

where

Ue = 1
2 g

l

0

[EAu2
x + kGA(vx −c)2 +EIc2

x ] dx, (9)

is the strain energy of an element.
The kinetic energy of the crank is

T2 = 1
2M2(r/2ut)2 + 1

2J2cu
2
t = 1

8M2r2u2
t + 1

2J2cu
2
t , (10)

where M2 is the crank mass and J2c is its mass momentum of inertia. Note that the variation
of crank kinetic energy is zero since ut is prescribed.

The kinetic energy of the slider is

T4 = 1
2M4R� B · R� B , (11)

where

R� B =[−rut sin (u+f)+ ut + vft ]ei +[rut cos (u+f)− (L+ u)ft + vt ]ej.

The work done by the applied force F and the friction force N acting at the slider is

W=[(F− mN)i+Nj] · RB . (12)
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2.3.   

The usual approach of the finite element method is to assume each unknown
deformation to be approximated by a finite series. The deflection v of the beam element
can be described by using a cubic polynomial as

v= a0 + a1x+ a2x2 + a3x3,

and the deflection u of the beam element by using a polynomial as

u= c0 + c1x,

where a0 0 a3 and c0 0 c1 are the generalized co-ordinates.
On non-dimensionalization by substituting j= x/l, the element deflections u, v and

rotation c can be expressed in terms of the nodal displacement vector {q}e as
{ue , ve , ce , ue+1, ve+1, ce+1}T. Sequentially

ui

u Nu1 0 0 Nu2 0 0
vi

g
G

G

F

f
v h

G

G

J

j
= G

G

G

K

k
0 Nv1 Nv2 0 Nv3 Nv4 G

G

G

L

l
g
G

G

G

G

F

f

ci h
G

G

G

G

J

j

. (13)

c 0 Nc1 Nc2 0 Nc3 Nc4

uj

vj

cj

The shape functions about u, v and c are detailed in Appendix A.
Substituting equation (13) into equation (6) and expressing it in terms of the nodal

displacement vector {q}e , one obtains the kinetic energy as follows

Te = 1
2{q̇}T

e [m1]{q̇}e + 1
2{q̇}T

e [m2]{q}e + {q}T
e [mc ]{q̇}e +[mqt ]{q̇}e +[mq ]{q}e +X1, (14)

where [m1], [m2], [mc ] [mqt ], [mq ] and X1 are detailed in Appendix A.
The derivatives of u and v with respect to x, the curvature K and the shear strain g within

the element can be written, respectively, as

ux =du/dx=[Bu ]{q}e , vx =dv/dx=[Bv ]{q}e , (15a, b)

K=dc/dx=[Bb ]{q}e , g=dv/dx−c=[Bs ]{q}e , (15c, d)

where

[Bu ]=d/dx[Nu ], [Bv ]=d/dx[Nc], [Bb ]=d/dx[Nv ], [Bs ]=d/dx[Nu ]− [Nc ]. (16a–d)

The strain energy of one element, equation (9), can be expressed as

Ue = 1
2{q}T

e [Ku ]{q}e + 1
2{q}T

e [Ks ]{q}e + 1
2{q}T

e [Kb ]{q}e , (17)

where [Ku ], [Kb ] and [Ks ] can be seen in Appendix A.
The kinetic energy of the slider, equation (11), can be expressed as

T4 = 1
2{q̇}T

e [m41]{q̇}e + 1
2{q}T

e [m42]{q}e + {q̇}T
e [m43]{q}e + {q}T

e [m44]+ {q̇}T
e [m45]+X2, (18)

where [m41], [m42], [m43], [m44], [m45], and X2 are detailed in Appendix A. The work done
by the force and friction force acting at the slider, equation (12), can be expressed as

W= {q̇}T
n [mw ]+X3, (19)

where [mw ] and X3 are detailed in Appendix A.
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By using Hamilton’s principle, one obtains

0=g
t2

t1

{dT2 + dT3 − dU3 + dT4 + dW} dt. (20)

The variation of the crank kinetic energy dT2 is zero, since ut is prescribed. The variation
of the Lagrangian density of the connecting rod, the variation of the kinetic energy of the
slider, and the virtual work done by the force and friction force acting at the slider are
respectively

g
t2

t1

(dT3 − dU3) dt=g
t2

t1

s
n

e=1

d{q}T
e0 1Le

1{q}e
−

d
dt

1Le

1{q̇}e1 dt+$ s
n

e=1

d{q}T
e

1Le

1{q̇}e%
t2

t1

, (21a)

g
t2

t1

dT4 dt=g
t2

t1

d{q}T
n0 1T4

1{q}n
−

d
dt

1T4

1{q̇}n1 dt+$d{q}T
n

1T4

1{q̇}n%
t2

t1

, (21b)

g
t2

t1

dW dt=g
t2

t1

d{q}T
n

1W
1{q}n

dt. (21c)

On substituting equations (21a–c) into equation (20),

0=g
t2

t1
$ s

n−1

e=1

d{q}T
e0 1Le

1{q}e
−

d
dt

1Le

1{q̇}e1+d{q}T
n0 1Ln

1{q}n
−

d
dt

1Ln

1{q̇}n
+

1T4

1{q}n

−
d
dt

1T4

1{q̇}n
+

1W
1{q}n1% dt+$ s

n

e=1

d{q}T
e

1Le

1{q̇}e%
t2

t1

+$d{q}T
n

1T4

1{q̇}n%
t2

t1

, (22)

where Le =Te −Ue is the Lagrangian function of an element and {q}e =
{ue , ve , ce , ue+1, ve+1, ce+1}T, n is the total number of the elements of the connecting rod.
The varied path coincides with the true path at the two timing ends t1 and t2. It follows
that dqe(x, t1)= dqe(x, t2)= dqn(x, t1)= dqn =(x, t2)=0.

By using the finite element technique, assembling the equation of motion of the elements,
the ordinary differential equation of the system can be expressed as

[M]{Q� }+[C]{Q� }+[K]{Q}=[F], (23)

where

{Q}= {u1, v1, c1, u2, v2, c2, . . . , un+1, vn+1, cn+1}T,

[M] and [K] are the global mass and stiffness matrices respectively, [C] is the global
damping term, and [F] is the force term. The definitions of [M], [K], [C] and [F] are shown
in Appendix A.

2.4. -  

The flexible deformation constraint (3) is the relation of un+1 and vn+1 at the last node.
The condition must be added to the corresponding entries of the system matrix.

Point A is the common point of the rigid crank and the flexible connecting rod. Thus,
the values u1 =0 and v1 =0 are specified. The slope angles c at points A and B are not
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specified, therefore c1 and cn+1 are free to rotate. With the boundary conditions
u1 = v1 =0, the first and the second rows and columns of the matrices [M], [C], [K] and
the vector [F] will have to be eliminated.

Since the flexible deformation constraint (3) holds for any time, its time derivative
relationships

v̇n+1 = u̇n+1 tan f+ un+1 f� sec2 f, (24a)

v̈n+1 = ün+1 tan f+(2u̇n+1f� + un+1f� +2un+1f� 2 tan f) sec2 f, (24b)

also hold. Equations (24a, b) show the coupling relationship between the x- and y-
directions at the last node point. Finally, two dependent equations are obtained which are
introduced into the corresponding components of matrices [M], [C] and [K].

2.5.  

For most structures, the exact form of the damping matrix is unknown since the sources
of energy loss are complicated. Also, in most cases, the effect of damping on the vibration
mode shape of the structure is small.

It is possible to introduce Rayleigh damping into the differential equation of motion
and can be written as in reference [12]

[Rg ]= a[M]+ b[K],

where [Rg ] is the Rayleigh damping matrix and a and b are the mass and stiffness damping
coefficients respectively. Rayleigh’s damping is added to the [C] matrix of equation (23),
which absorbs amplitudes of the high frequency modes.

3. STEADY-STATE ANALYSIS OF TIME-VARYING SYSTEM

In this paper, the non-dimensional length ratio is defined as l= r/L, where L is the
length of the connecting rod, and r is the length of the crank. For a small crank (lW 1),
all coefficient matrices of equation (23) can be simplified by applying a binomial expansion.
Now, f, f� , f� 2, f� , sin(u+f), cos (u+f), sin f, cos f and tan f are given as functions
of u and l, and the details can be seen in Appendix B. Substituting them into the element
matrices and retaining the terms up to O(l), the equation of motion of an element can
be expressed as

[MA ]e{q̇}e + l cos Vt[CB ]e{q̇}e +([KA ]e + l sin Vt[KB ]e){q}e

= l[F1]e cos Vt+ l[F2]e sin Vt, (25)

where [MA ]e , [CB ]e , [KA ]e , [KB ]e , [F1]e and [F2]e are detailed in Appendix A. It should be noted
that [Mi ], [Ci ], [Ki ] and [Fi] are all constant coefficient matrices and V is equal to the crank
angular velocity u� .

Now the constraints (equations 3, 24a, b) of position, velocity, and acceleration can be
expressed respectively as

vn+1 = lun+1 sin Vt, v̇n+1 = lu̇n+1 sin Vt+ lVun+1 cos Vt, (26a, b)

v̈n+1 = lün+1 sin Vt+2lVu̇n+1 cos Vt− lV2un+1 sin Vt. (26c)

Assembling equation (25) and considering the boundary conditions and geometric
constraints, the equation of motion of the system can be simplified to

([MA ]+ l cos Vt[Ma ]){Q� }+ l cos Vt([CB ]+2V[Ma ]){Q� }

+([KA ]+ l sin Vt([KB ]+ [Ka ]−V2[Ma ])){Q}= l[F1] cos Vt+ l[F2] sin Vt. (27)
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Figure 4. Steady-state responses versus crank angular velocity V. ——, l=0·2; · · · , l=0·35; - - - , l=0·5.
(a) Log cA; (b) Log (Ap)u; (c) Log (Ap)v; (d) Log c; (e) Log (Ap)uB; (f) Log cB .

where the (3n+1)th column of the [Ma ] matrix is equal to the (3n+2)th column of the
[MA ] matrix; the other column’s elements in [Ma ] are zeros. [Ka ] is the same as the condition
of the [Ma ] matrix.

With constant angular velocity V of the crank, equation (27) is a second order
time-varying periodic differential equation. The steady-state solutions of the linear
parametric equation (27) can be determined by the harmonic balance method and the
approximate solution with period (T=2p/V) can be expressed in a Fourier series as

{Q}= {b0}+ s
a

k=2,4,6,. . .

{ak} sin
kVt
2

+ {bk} cos
kVt
2

. (28)

Substituting equation (28) into equation (27) and comparing coefficients in the same
harmonic term, one obtains a non-homogeneous algebraic equation in terms of {ak} and
{bk} as

[KA ]{b0}+((lV/2)[CB ]+ (l/2)[KB ]+ (l/2)[Ka ]){a2}= {0}, (29a)

(−V2[MA ]+ [KA ]){b2}+ l(V[CB ]+ (1/2)[KB ]+ (1/2)[Ka ]− (V2/2)[Ma ]){a4}= l[F1], (29b)

l([KB ]+ [Ka ]−V2[Ma ]){b0}+(−V2[MA ]+ [KA ]){a2}

+((lV2/2)[Ma ]− lV[CB ]− (l/2)[KB ]− (l/2)[Ka ]){b4}= l[F2], (29c)

(−(r2V2/4)[MA ]+ [KA ]){ar}+(−(l(r−2)2V2/8)[Ma ]

− (l(r−2)V/4)([CB ]+2V[Ma ])+2V(Ma ])

+ (l/2)([KB ]+ [Ka ]−V2[Ma ])){br−2}+((l(r+2)2V2/8)[Ma ]
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− (l(r+2)V/4)([CB ]+2V[Ma ])− (l/2)([KB ]+ [Ka ]

−V2[Ma ])){br+2}= {0}, (r=4, 6, . . . ) (29d)

(−(r2V2/4)[MA ]+ [KA ]){br}+(l(r−2)2V2/8)[Ma ]+ (l(r−2)V/4)([CB ]+2V[Ma ])

− (l/2)([KB ]+ [Ka ]−V2[Ma ]){ar−2}+(−(l(r+2)2V/8)[Ma ])

+ (l(r+2)V/4)([CB ]+2V[Ma ])+ (l/2)([KB ]+ [Ka ]

−V2[Ma ]){ar+2}= {0}, (r=4, 6, . . . ). (29e)

The total amplitude of the periodic solution can be written as

Ap = s
Np

k=2,4,6, . . .

({ak}2 + {bk}2)1/2,

where Np is chosen sufficiently large when {ak} and {bk} are sufficiently small and
consequently negligible.

4. NUMERICAL RESULTS AND DISCUSSION

The material properties and dimensions of the connecting rod are the same as one of
those used by Bahgat and Willmert [13]. Figure 1(a) shows such a slider crank mechanism
with the following characteristics: crank length (OA)= r=5·08×10−2 m; connecting rod
length (AB)=L=2·54×10−1 m; crank speed (ut)=100·0 rad/s.

Figure 5. Comparison of the steady-state responses versus crank angular velocity V obtained by
time-dependent, ——, and simple-supported, - - - , conditions with l=0·05. (a) Log cA; (b) Log (Ap)u;
(c) Log (Ap)v; (d) Log c; (e) Log cB .
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Figure 6. Comparison of the steady-state responses versus crank angular velocity obtained by time-dependent,
——, and simple-supported, - - - , conditions with l=0·2 (a) Log cA ; (b) Log (Ap)u; (c) Log (Ap)v; (d) Log c;
(e) Log cb .

The connecting rod is considered to be a steel rod with modulus of elasticity of
2·0684×1011 N/m2, mass density of 7·74796×103 N s2/m4, constant rectangular cross-
section 1·6129×10−4 m2 and Timoshenko shear coefficient K=0·85. Here the damping
term is taken to be 0.002 times the sum of the mass and stiffness matrix to absorb the
amplitudes of high frequency modes.

The constraint conditions (equations 3, 24a, b) of the position, velocity and acceleration
obtained in the present paper are different from those obtained by assuming zero
displacement, vn+1 =0, and utilizing Newton’s Second Law to balance the axial, shear
loads and inertia force of the piston at x=L. Moreover, in the present work the end point
B of the connecting rod moves along the X-axis, un+1 and vn+1 are not independent, and
are related by equation (3). Therefore, the elastic deformation of the end position could
be predicted.

On the other hand, it is a second order time-varying periodic differential equation even
if the rotation speed V is constant. The steady-state solutions of the linear parametric
equation can be determined by the harmonic balance method. The dimensionless values
of length ratio l selected in this investigation are 0·2, 0·35, and 0·5. The value of l=0·5
was chosen on the basis of the upper limit of the usual slider-crank mechanism design.
Four elements are used in the present work. The steady-state amplitudes and rotary angles
for various length ratios are shown in Figure 4. It is seen that as the length ratio increases,
the steady-state responses also increase. However, the resonant frequencies remain
the same. The first mode resonant frequencies of u, v and c are 32 800 rad/s, 700 rad/s
and 25 300 rad/s, respectively. These values are close to the frequency (p/2LzE/r=
3195 rad/s) of the fixed-free ends in the u-direction, the frequency (p2zEI/rAL4 =
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5795 rad/s) of the pinned-pinned ends in the v-direction and the frequency (p/LzKG/r=
36 900 rad/s) of free-free ends in the c-direction.

Figures 5a–e give the comparison of the steady-state responses obtained for cases of
time-dependent and simply-supported boundary conditions. A length ratio l=0·05 is
taken. The two sets of results are almost the same, except in the longitudinal direction.
In the present paper, the simply-supported condition is replaced by the time-dependent
condition. Thus, the frequency decreases from 70 500 rad/s to 32 800 rad/s in the
longitudinal direction.

Figures 6a–e show the comparison of the responses for a large length ratio l=0·2
between the present work and the simply-supported condition [7, 8]. It is seen that a new
natural frequency for the simply-supported condition is excited between the second mode
and the third mode frequencies of cA and cB . For this large length ratio the natural
frequency in the longitudinal direction increases from 70 500 rad/s (Figure 5(b)) to
71 300 rad/s (Figure 6(b)).

5. CONCLUSIONS

This paper studies the steady-state response of the flexible connecting rod of a
slider-crank mechanism. The main point in the present work is that the boundary condition
of the connecting rod is a time-dependent boundary support and not a purely simple one.
In other words, the simply-supported boundary condition at end point B V(1, t)=0 is
now replaced by V(1, t)=U(1, t) tan f.

The finite element technique is developed to solve such a problem with time-dependent
boundary support. Due to the constant angular velocity of the crank, the equation of
motion becomes a time-varying periodic differential equation. The steady-state solution
of the linear parametric equation is determined by the harmonic balance method. From
the formulation and results obtained, the following conclusions can be drawn:

(1) In the case of the simply-supported end, it is seen that when un+1 = vn+1 =0, and there
is no deformation at end point B, the piston position of an elastic connecting rod will be
the same as that of a rigid body one. Thus, the assumption of the simply-supported end
does not contribute to the determination of the end position. However, the elastic
deformation of end position could be determined according to the present work.
(2) When the crank length increases, the steady-state responses of u, v, and c increase.
(3) The steady-state responses of the time-dependent boundary condition are almost the
same as those of the simply-supported condition except in the axial direction.
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APPENDIX A

Details of the shape function are

Nu1 =1− j, Nu2 = j, Nv1 = [1−3j2 +2j3 + (1− j]/(1+F),

Nv2 = [j−2j2 + j3 + (j− j2)F/2]l/(1+F), Nv3 = (3j2 −2j3 + jF)/(1+F),

Nv4 = [−j2 + j3 − (j− j2)F/2]l/(1+F), Nc1 =6(−j+ j2)/[l(1+F)],

Nc2 = [1−4j+3j2 + (1− j)F]/(1+F), Nc3 =6(j− j2)/[l(1+ j)],

Nc4 = (−2j+3j2 + jF)/(1+F), F=12EI/KGAl2, j= x/l.

For the kinetic energy (14) of an element:

[m1]= rA g
l

0

[NT
u Nu +NT

u Nv ] dx+ rI g
l

0

NT
cNc dx,

[m2]= rAf� 2 g
l

0

[NT
u Nu +NT

v Nv ] dx+ rIḟ2 g
l

0

NT
cNc dx,

[mc ]= rAḟ g
l

0

[NT
v Nu −NT

u Nv ] dx,

[mqt ]=−rAru� sin (u+f) g
l

0

Nu dx+ rA[ru� cos (u+f)−f� xo ] g
l

0

Nv dx
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− rAf� g
l

0

xNv dx− rIf� g
l

0

Nc dx,

[mq ]=−rA[x0f� 2 − ru� f� cos (u+f)] g
l

0

Nu dx+ rAf� 2 g
l

0

xNu dx

− rAru� f� sin (u+f) g
l

0

Nv dx,

X1 = 1
2rA[r2u� 2 −2ru� f� xo cos(u+f)+f� 2x2

0] g
l

0

dx

+1
2rIf� 2 g

l

0

dx+ rA(x0f� 2 − ru� f� cos (u+f)) g
l

0

x dx+ 1
2rAf� 2 g

l

0

x2 dx.

For the strain energy (17) of an element:

[Ku ]=EA g
l

0

[Bu ]T[Bu ] dx, [Kb ]=EI g
l

0

[Bb ]T[Bb ] dx, [Ks ]= kGA g
l

0

[Bs ]T[Bs ] dx.

For the kinetic energy (18) of the slider:

[m41]=M4[NT
u Nu +NT

v Nv]j=1, [m42]=M4f� 2[NT
u Nu +NT

v Nv ]j+1,

[m43]=M4f� 2[NT
u Nv −NT

v Nu ]j=1,

[m44]= {M4[Lf� 2 − ru� f� cos (u+f)]NT
u }j=1 − {M4ru� f� sin(u+f)NT

v }j=1,

[m45]= {M4[ru� cos(u+f)−Lf� 2]NT
v }j=1 − {M4ru� sin (u+f)NT

u }j=1,

X2 = 1
2M4r2u� 2 −M4rLu� f� cos (u+f)+ 1

2M4L2f� 2.

For the work (19) done by the applied force and friction force:

[mw ]= {(F cos f− mN cos f−N sin f)NT
u }j=1

+ {(F sin f− mN sin f+N cos f)NT
v }j=1,

X3 =Fr[cos f cos (u+f)+ sin f sin (u+f)]+Nr[sin f cos (u+f)

− cos f sin (u+f)]+ mNr[cos f cos (u+f)+ sin f sin (u+f)]

+FL cos f−LmN cos f−LN sin f.

For the steady-state analysis (25) of a time-varying system:

[MA ]e = rA g
l

0

[NT
u Nu +NT

v Nv ] dx+ rI g
l

0

NT
cNc dx,

[CB ]e = rAV g
l

0

[NT
v Nu −NT

u Nv ] dx,
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[KA ]e =EA g
l

0

NT
u,xNu,x dx+EI g

l

0

NT
c,x Nc,x dx+ kGA g

l

0

[Nv,x −Nc ]T[Nv,x −Nc ] dx,

[KB ]e = rAV2 g
l

0

[NT
v Nu −NT

u Nv ] dx, [F1]e =−LV2rA g
l

0

Nu dx,

[F2]e =R0V
2rA g

l

0

Nv dx−LV2rA g
l

0

Nv dx+V2rA g
l

0

xNv dx+V2rI g
l

0

Nc dx.

APPENDIX B

The functions of u and l are as follows:

f=sin−1 (l sin u)= l sin u+ l3 sin3 u/6+O(l5),

f� = lu� cos u/cos f= lu� cos u+ l3u� sin3 u cos u+O(l5),

f� 2 = l2u� 2 cos2 u+O(l4), f� =−lu� 2 sin u+ l3u� 2(sin u cos2 u−1/2 sin3 u)+O(l5),

sin (u+f)= sin u+1/2l sin 2u−1/2l2 sin3 u+O(l4),

cos (u+f)= cos u− l sin2 u−1/2l2 cos u sin2 u+O(l4),

sin f= l sin u+O(l3), cos f=1+O(l2), tan f= l sin u, sec2 u=(1/cos u)2 =1.


